Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015

EXPERIMENTAL

Reagents and Apparatus. All reagents were handled in a MBraun Labmaster 130 glovebox (dry N₂) or on a grease-free dual manifold argon and vacuum (base vacuum = $2x10^{-2}$ mbar) Schlenk line. Solvents were dried by distillation from NaK (pentane, hexane, Et₂O) or CaH₂ (CH₂Cl₂). Anhydrous grade MeCN was obtained from Sigma-Aldrich and used without distillation. Prior to use all solvents were stored for at least 48 h over 3 Å molecular sieves, which had been freshly activated at 300 °C under dynamic vacuum for 24 h. PCl₃ (99 %), AsCl₃ (99.99 %), BiCl₃ (99.99 %), *bipy* (> 99 %), and *tbbipy* (98 %) were obtained from Sigma-Aldrich and used without further purification. SbF₃ (98 %) was obtained from Sigma-Aldrich and sublimed prior to use. Deuterated solvents were dried using the same procedure as MeCN. PMe₃ (97%) and TMSOTf (99%) were distilled before use. Reactions were carried out inside the glovebox in screw-cap glass vials that had been dried at 200 °C for at least 1 h and placed under dynamic vacuum (glovebox antechamber) while still hot. NMR tubes fitted with J-Young valves were charged and sealed inside the glovebox. Infrared spectra were obtained on a Perkin Elmer Frontier instrument equipped with a diamond ATR module. Elemental analyses were carried out by Canadian Microanalytical Ltd. in Delta, British Columbia, Canada. All quantum chemical calculations were carried out using Gaussian 09.¹

General procedure for [6E][OTf]₃: ECl₃ (1 mmol) and AgOTf (3 mmol, 0.772 g) were combined in 12 mL MeCN and stirred in the dark for 1 hour. Solid *bipy* (2 mmol, 0.312 g) was added in three portions over 5 minutes and the resulting suspension was allowed to stir for an additional hour. The suspension was filtered to remove AgCl, concentrated to 3 mL and recrystallized at -30 °C. Products were isolated by decanting the mother liquor and removing all volatiles under vacuum. Characterization data is given below.

¹ Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

[(bipy)_2P][OTf]_3: Yield: 0.317 g (40 %); Melting Point: 237 °C dec.; Elemental Analysis (calcd./expt.): C (34.94/34.86), H(2.04/2.18), N(7.09/7.72); IR (ATR, 298 K, [cm⁻¹]): 316 (m), 420 (s), 428 (m), 441 (m), 451 (s), 490 (w), 506 (s), 515 (vs), 573 (s), 633 (vs), 687 (m), 713 (m), 720 (m), 758 (w), 767 (m), 785 (s), 908 (vw), 1012 (vs), 1024 (vs), 1046 (vw), 1072 (w), 1109 (w), 1142 (s), 1159 (s), 1223 (vs), 1247 (vs), 1322 (w), 1377 (vw), 1432 (w), 1451 (m), 1471 (m), 1506 (w), 1537 (vw), 1571 (vw), 1616 (m), 2255 (w), 3051 (w), 3103 (w); ¹H NMR (CD₃CN, 298 K, 300.15 MHz): 1.97 (*singlet*, 3H), 8.13 (*pseudo multiplet of triplets*, 2H), 8.39 (*pseudo multiplet of triplets*, 2H), 8.78-8.81 (*multiplet*, 2H), 8.88 (*pseudo multiplet of triplets*, 2H), 8.96 (*pseudo multiplet of triplets*, 2H), 9.06 (*doublet*, ³*J*_{HH} = 8.2 Hz), 9.13 (*doublet of triplets*, ³*J*_{HH} = 8.1 Hz, 1.4 Hz); ¹³C{¹H} (CD₃CN, 298 K, 75.5 MHz, [ppm]): 126.9 (*doublet*, 6 Hz), 127.8 (*doublet*, 4 Hz), 131.8 (*doublet*, 4 Hz), 133.0 (*doublet*, 6 Hz), 145.5 (*doublet*, 13 Hz), 148.8 (*singlet*), 1⁴⁹F{¹H} NMR (CD₃CN, 298 K, 282.5 Hz, δ [ppm]): -79.31 (*singlet*).

[(*bipy*)₂As][OTf]₃: Yield: 0.813 g (97 %); Melting Point: 254-262 °C dec.; ; Elemental Analysis (calcd./expt.): C (33.10/33.15), H(1.93/2.02), N(6.71/6.65); IR (ATR, 298 K, [cm⁻¹]): 225 (m), 244 (m), 262 (m), 277 (w), 291 (m), 302 (s), 319 (w), 352 (m), 409 (m), 418 (m), 461 (m), 516 (s), 574 (m), 633 (vs), 666 (w), 723 (m), 752 (vw), 756 (vw), 764 (m), 777 (s), 805 (w), 849 (vw), 904 (vw), 1008 (s), 1024 (s), 1063 (w), 1075 (w), 1153 (s), 1162 (s), 1203 (m), 1225 (m), 1261 (m), 1276 (m), 1297 (w), 1322 (vw), 1334 (vw), 1429 (w), 1451 (m), 1474 (w), 1505 (w), 1572 (vw), 1606 (m), 1631 (vw), 3069 (vw), 3096 (w), 3125 (vw); ¹H NMR (CD₃CN, 298 K, 300.15 MHz): 7.96 (*broad singlet*, 1H), 8.35 (*broad singlet*, 1H), 8.49 (*broad singlet*, 1H), 8.77 (*broad singlet*, 2H), 8.91 (*broad singlet*, 1H), 8.93 (*broad singlet*, 1H), 1³C{¹H} (CD₃CN, 298 K, 75.5 MHz, [ppm]): 126.0 (*singlet*), 131.2 (*singlet*), 147.4 (*singlet*), 148.0 (*singlet*), 148.2 (*singlet*); ¹⁹F{¹H} NMR (CD₃CN, 298 K, 282.5 Hz, δ [ppm]): -79.4 (*singlet*).

[(*bipy*)₂Bi][OTf]₃•MeCN: Yield = 0.756 g (75 %); Melting Point: 220 °C dec.; Elemental Analysis with one molecule of MeCN (calcd./expt.): C (29.74/29.54) H(1.90/1.68) N(6.94/6.75); IR (ATR, 298 K, [cm⁻¹]): 227 (m), 261 (w), 317 (m), 353 (s), 410 (m), 438 (vw), 470 (w), 514 (vs), 574 (s), 625 (vs), 633 (vs), 653 (w), 727 (m), 765 (s), 807 (w), 837 (vw), 1005 (vs), 1031 (m), 1063 (w), 1074 (w), 1106 (m), 1157 (vs), 1207 (s), 1225 (s), 1256 (s), 1275 (s), 1322 (m), 1379 (vw), 1442 (m), 1475 (w),

1498 (w), 1567 (w), 1576 (w), 1598 (m), 1647 (m), 3040 (vw), 3086 (w), 3118 (w), 3275 (w); ¹H NMR (CD₃CN, 298 K, 300.15 MHz): 1.97 (*singlet*, 1H), 7.94 (*triplet*, 6.7 Hz, 2H). 8.47 (*triplet of doublets*, 7.5 Hz, 1.5 Hz, 2H), 8.64 (*doublet*, 8.2 Hz, 2H), 8.90 (*singlet*, 2H); ¹³C{¹H} (CD₃CN, 298 K, 75.5 MHz, [ppm]): 121.0 (*quartet*, ¹J_{CF} = 320 Hz), 127.6 (*singlet*), 130.6 (*singlet*), 144.9 (*singlet*), 151.6 (*singlet*), 154.2 (*singlet*); ¹⁹F{¹H} NMR (CD₃CN, 298 K, 282.5 Hz, δ [ppm]): -79.1 (*singlet*).

Synthesis of [(tbbipy)₂P][OTf]₃•MeCN: To a rapidly stirred suspension of PCl₃ (5.00 mmol, 0.687 g) and *tbbipy* (10.00 mmol, 2.684 g) in five portions to yield a yellow suspension. The suspension was allowed to stir for 2 hours and allowed to settle. The orange supernatant was separated via filtration and concentrated in vacuo to ca. 10 mL when a large amount of yellow precipitate appeared. The precipitate was allowed to settle over 48 hours at -30 °C and separated by decanting the light orange supernatant. The precipitate was washed with Et₂O (10 mL), filtered, and dried under dynamic vacuum for 8 hours to yield the product as a fine yellow powder. Yield: 3.560 g (70 %); Melting Point: 257 °C dec.; Elemental Analysis with one molecule of MeCN (calcd./expt.): C (46.63/46.70), H (4.87/5.28), N (6.63/6.34); IR (ATR, 298 K, [cm⁻¹]): 238 (w), 279 (vw), 298 (w), 315 (vw), 340 (vw), 418 (vw), 455 (m), 493 (m), 517 (s), 539 (w), 550 (w), 574 (s), 612 (w), 634 (vs), 697 (vw), 727 (w), 740 (w), 758 (w), 846 (s), 901 (m), 932 (m), 969 (w), 1025 (vs), 1071 (w), 1118 (w), 1163 (s), 1219 (s), 1232 (s), 1257 (s), 1293 (m), 1372 (w), 1385 (w), 1464 (w), 1483 (w), 1515 (w), 1543 (vw), 1592 (m), 1615 (m); ¹H NMR (CD₃CN, 298 K, 500 MHz, δ [ppm]): 1.50 (singlet, 18H), 1.58 (singlet, 18H), 8.04 (pseudo doublet of triplets, 6.9 Hz, 1.7 Hz, 2H), 8.34 (doublet of doublets, 6.3 Hz, 1.7 Hz, 2H), 8.64 (doublet of doublets, 6.9 Hz, 2.3 Hz, 2H), 9.02 (multiplet ,4H), 9.17 (doublet of doublets, 6.3 Hz, 2.9 Hz, 2H); ¹³C{¹H} NMR (CD₃CN, 298 K, 125.79 MHz, δ [ppm]): 30.4 (singlet), 30.8 (singlet), 38.8 (singlet), 39.2 (singlet), 122.3 (quartet, ${}^{1}J_{CF} = 321$ Hz), 125.0 (doublet, $J_{CP} = 113$ Hz), 124.9 (doublet, $J_{CP} = 113$ Hz), 129.6 (doublet, $J_{CP} = 177.4$ Hz), 129.5 (doublet, $J_{CP} = 177.4$ Hz), 143.8 (doublet, $J_{CP} = 3$ Hz), 144.6 (doublet, $J_{CP} = 13$ Hz), 147.4 (singlet), 148.1 (singlet), 175.1 (doublet, $J_{CP} = 4$ Hz), 179.3 (*doublet*, $J_{CP} = 3$ Hz); ³¹P NMR (CD₃CN, 298 K, 202.5 MHz, δ [ppm]): 30.7 (*singlet*); ¹⁹F{¹H} NMR (CD₃CN, 298 K, 282.5 Hz, δ [ppm]): -79.2 (singlet).

Synthesis of [(*tbbipy*)₂**As**][**OTf**]₃•**MeCN**: AsCl₃ (1 mmol, 0.181 g) and AgOTf (3 mmol, 0.771 g) were combined in 5 mL MeCN and stirred for 5 minutes. Solid *tbbipy* (2 mmol, 0.537 g) was added in five small portions and the resulting white suspension was allowed to stir for 4 hours and then filtered. The clear and colourless filtrate was concentrated to 3 mL, layered with Et₂O and placed in the freezer at -

30 °C for 16 hours to obtain white crystalline material. The supernatant was decanted and the solids were washed twice with 2 mL Et₂O. Removal of all volatiles under vacuum gave the product as a fine white powder. Yield: 0.677 g, 64 %; Melting Point: 245 °C dec.; Elemental Analysis (calcd./expt.): C (44.24/43.91), H (4.57/4.86), N (5.29/5.26); IR (ATR, 298 K, [cm⁻¹]): 210 (s), 219 (s), 236 (w), 251 (w), 292 (w), 330 (w), 350 (w), 368 (w), 414 (w), 483 (w), 516 (s), 545 (m), 573 (m), 602 (m), 634 (vs), 720 (w), 742 (w), 755 (w), 846 (m), 896 (m), 936 (w), 1017 (vs), 1071 (w), 1154 (s), 1210 (s), 1229 (s), 1252 (s), 1277 (s), 1370 (w), 1421 (m), 1484 (w), 1545 (w), 1614 (m); ¹H NMR (CD₃CN, 298 K, 500 MHz, [ppm]): 1.52 (*broad singlet*, 18H), 7.68-8.71 (*broad overlapping multiplet*, 3H), 2.32 (*singlet*), 37.4 (*singlet*), 120.8 (*quartet*, ¹*J*_{CF} = 322 Hz), 123.9 (*singlet*), 127.9 (*broad singlet*), 146.6 (*singlet*), 147.2 (*broad singlet*), 173.6 (*broad singlet*); ¹⁹F{¹H}NMR (CD₃CN, 298 K, 282.5 Hz, [ppm]): -79.3 (*singlet*). Crystals suitable for diffraction were obtained from a MeCN solution and exhibited the same NMR resonances as the bulk material.

Synthesis of [*(tbbipy*)₂**Sb**][**OTf**]₃•**MeCN**: Sb(OTf)₃ (1 mmol, 0.569 g) and *tbbipy* (2 mmol, 0.537 g) were combined in 5 mL CH₂Cl₂ to obtain a clear and colourless solution which was stirred for 2 hours. Upon filtration, the colourless filtrate was concentrated to 2 mL under vacuum, layered with pentane, and placed in the freezer at -30 °C for 72 hours to obtain a fine white powder. Yield: 0.857 g, 77 %; Melting Point: 159-163 °C dec.; Elemental Analysis (calcd./expt.): C (42.36/41.41), H (4.38/4.09), N(5.07/5.03); IR (ATR, 298 K, [cm⁻¹]): 220 (vw), 228 (vw), 236 (vw), 259 (vw), 316 (w), 350 (w), 396 (w), 515 (s), 548 (w), 573 (m), 605 (m), 634 (vs), 719 (w), 849 (m), 898 (m), 1015 (vs), 1153 (s), 1199 (s), 1223 (s), 1262 (s), 1369 (w), 1416 (m), 1483 (w), 1546 (w), 1614 (m); ¹H NMR (CD₂Cl₂, 298 K, 300.15 MHz): 1.47 (*broad singlet*, 18H), 8.03 (*doublet of doublets*, *J*_{HH} = 6.3 Hz, 1.9 Hz, 4H), 8.68 (*broad doublet*, *J*_{HH} = 1.9 Hz, 4H), 8.71 (*broad doublet*, *J*_{HH} = 6.3 Hz, 1.9 Hz, 4H); 1³C{¹H} (CD₂Cl₂, 298 K, 75.5 MHz, [ppm]): 29.8 (*singlet*), 36.6 (*singlet*), 119.9 (*quartet*, ¹*J*_{CF} = 323 Hz), 122.3 (*broad singlet*), 147.0 (*broad singlet*), 148.4 (*singlet*), 170.8 (*broad singlet*); ¹⁹F{¹H} NMR (CD₂Cl₂, 298 K, 282.5 Hz, [ppm]): -78.9 (*singlet*).

Synthesis of [(*tbbipy*)₂**Bi**][**OTf**]₃: BiCl₃ (1 mmol, 0.316 g) and AgOTf (3 mmol, 0.771 g) were combined in a vial with 5 mL MeCN and stirred in the dark for 5 minutes to obtain a white suspension. Solid *tbbipy* (2 mmol, 0.537 g) was added in 5 portions and the suspension was stirred in the dark for 1 hour and then allowed to settle. The suspension was filtered and the precipitate was washed with an

additional 2 mL MeCN. The filtrates were combined and all volatiles were removed under vacuum to obtain the product as a fine white powder. Yield: 1.240 g, quantitative; Melting Point:131-132 °C; Elemental analysis was not obtained; IR (ATR, 298 K, [cm⁻¹]): 248 (m), 264 (vw), 297 (w), 318 (w), 356 (m), 393 (w), 420 (vw), 484 (vw), 515 (s), 545 (m), 573 (m), 604 (m), 631 (vs), 667 (vw), 692 (vw), 716 (w), 740 (w), 754 (w), 847 (m), 896 (m), 1010 (vs), 1150 (s), 1198 (s), 1222 (s), 1252 (s), 1262 (s), 1310 (m), 1368 (w), 1411 (m), 1444 (vw), 1467 (w), 1485 (w), 1548 (m), 1610 (m), 2873 (w), 2907 (w), 2967 (w); ¹H NMR (CD₂Cl₂, 298 K, 300.15 MHz): 1.44 (*singlet*, 36 H), 7.95 (*broad singlet*, 2H), 8.77 (*broad singlet*, 2H); ¹³C{¹H} (CD₃CN, 298 K, 75.5 MHz, [ppm]): 30.3 (*singlet*), 37.3 (*singlet*), 121.8 (*quartet*, ¹J_{CF} = 319 Hz), 124.3 (*singlet*), 127.1 (*singlet*), 150.6 (*singlet*), 153.8 (*singlet*), 169.7 (*singlet*); ¹⁹F{¹H} NMR (CD₂Cl₂, 298 K, 282.5 Hz, [ppm]): -79.1 (*singlet*).

Synthesis of [*(dmap)*₃**P**][**OTf**]₃: PCl₃ (1 mmol, 0.137 g) and AgOTf (3 mmol, 0.771 g) were combined in a vial with 4 mL MeCN and stirred in the dark to obtain a clear solution. Solid *dmap* (3 mmol, 0.367 g) was added in three portions with stirring to obtain a white suspension, which was stirred for 1 hour in the dark and allowed to settle. A clear and colourless solution was obtained upon filtration. Removal of all volatiles gave the product as an off white powder. Yield: 0.798 g, 98 %; Melting Point: 155 °C, dec.; Elemental analysis was precluded by samples decomposition under high vacuum, see ¹H, ³¹P and ¹³C NMR spectra below; IR (ATR, 298 K, [cm⁻¹]): 227 (m), 247 (w), 285 (vw), 315 (w), 347 (vw), 377 (m), 469 (m), 513 (s), 572 (s), 602 (s), 631 (vs), 692 (vw), 754 (w), 800 (m), 827 (m), 894 (vw), 942 (w), 998 (vs), 1000 (vs), 1070 (w), 1148 (s), 1214 (s), 1233 (m), 1263 (m), 1317 (w), 1346 (vw), 1405 (w), 1442 (w), 1497 (vw), 1566 (m), 1588 (w), 1636 (m); ¹H NMR (CD₃CN, 298 K, 300.15 MHz): 3.31 (*singlet*, 18H), 7.06 (*pseudo doublet*, 6H), 7.72 (*pseudo doublet*, 6 H); ¹³C {¹H} (CD₃CN, 298 K, 75.5 MHz, [ppm]): 41.6 (*singlet*), 118.6 (*singlet*), 122.0 (*quartet*, ¹*J*_{CF} = 322 Hz), 142.9 (*singlet*), 158.8 (*singlet*); ³¹P NMR (CD₃CN, 298 K, 121.6 MHz, δ [ppm]): 101.74 (*singlet*); ¹⁹F {¹H} NMR (CD₂Cl₂, 298 K, 282.5 Hz, [ppm]): -79.1 (*singlet*). Colourless crystalline blocks were obtained upon storing a saturated MeCN solution for 48 hours and exhibited the same NMR spectra as the bulk material.

Synthesis of $[(dmap)_3As][OTf]_3$: AsCl₃ (1 mmol, 0.181 g) and AgOTf (3 mmol, 0.772 g) were combined in a vial and MeCN (4 mL) was added to obtain a clear and colourless solution. Solid *dmap* (3 mmol, 0.371 g) was added in three portions to obtain a white suspension, which was stirred in the dark for 30 minutes. The suspension was filtered and placed in the freezer at -30 °C overnight to obtain

colourless crystalline blocks, which were isolated by decanting the supernatant and dried under vacuum. Yield: 0.621 g, 69%; Melting Point: 162 °C dec.; Satisfactory elemental analysis could not be obtained, see ¹H and ¹³C NMR spectra below; IR (ATR, 298 K, [cm⁻¹]): 228 (s), 247 (m), 253 (m), 284 (w), 313 (m), 349 (m), 377 (s), 469 (s), 511 (vs), 571 (s), 601 (s), 630 (vs), 692 (vw), 717 (vw), 744 (vw), 754 (w), 801 (m), 829 (m), 899 (vw), 998 (vs), 1010 (vs), 1069 (w), 1146 (vs), 1213 (s), 1232 (m), 1263 (m), 1319 (w), 1346 (vw), 1407 (w), 1443 (w), 1497 (w), 1566 (m), 1587 (w), 1638 (m), 2971 (vw), 3089 (vw), 3272 (w); ¹H NMR (CD₃CN, 298 K, 300.15 MHz): 3.23 (*singlet*, 18H), 6.93 (*pseudo doublet*, 6H), 8.06 (*pseudo doublet*, 6H); ¹³C{¹H} (CD₃CN, 298 K, 75.5 MHz, [ppm]): 41.1 (*singlet*), 118.4 (*singlet*), 143.6 (*singlet*), 158.3 (*singlet*); ¹⁹F{¹H} NMR (CD₂Cl₂, 298 K, 282.5 Hz, [ppm]): -79.9 (*singlet*).

Synthesis of [(tbbipy)₂PCl₂][OTf]₃: To a yellow suspension of [(tbbipy)_{6'P}][OTf]₃ (1 mmol, 1.016 g) in 3 mL MeCN was dropwise added a solution of SO₂Cl₂ (1 mL of a 1 M CH₂Cl₂ solution) over 1 minute. A clear yellow solution was obtained after stirring for 1 hour. Removal of all volatiles under dynamic vacuum gave a fine light yellow powder. Yield: 1.069 g, 99 %; Melting Point: °C. 204 °C dec.; Elemental Analysis (calcd./expt.): C (43.14/42.41), H(4.46/4.21), N (5.16/5.19); IR (ATR, 298 K, [cm⁻ ¹]): 226 (m), 302 (vw), 348 (w), 375 (vw), 422 (vw), 476 (m), 494 (s), 515 (vs), 528 (m), 549 (m), 572 (s), 604 (s), 635 (vs), 731 (w), 754 (w), 802 (vw), 842 (vw), 849 (m), 901 (m), 935 (w), 1026 (vs), 1069 (m), 1149 (s), 1222 (s), 1248 (s), 1373 (w), 1433 (m), 1487 (vw), 1540 (w), 1552 (w), 1618 (m), 2973 (w); ¹H NMR (CD₃CN, 298 K, 300.15 MHz): 1.42 (singlet, 18H), 1.69 (singlet, 18H), 7.54 (pseudo doublet of doublets, 2H), 8.05 (multiplet, 2H), 8.69 (multiplet, 2H), 9.03 (pseudo triplet, 2H), 9.24 (pseudo doublet of doublets, 2H), 10.35 (pseudo doublet of doublets, 2H); ¹³C{¹H} (CD₃CN, 298 K, 75.5 MHz, [ppm]): 30.2 (singlet), 30.5 (singlet), 39.1 (singlet), 39.9 (singlet), 126.6 (doublet, 5 Hz), 127.1 (doublet, 5 Hz), 131.3 (doublet, 6 Hz), 131.6 (doublet, 7 Hz), 137.5 (doublet, 11 Hz), 139.1 (doublet, 11 Hz), 141.2 (doublet, 4 Hz), 145.3 (doublet, 5 Hz), 178.1 (singlet), 181.0 (singlet); ³¹P NMR (CD₃CN, 298 K, 121.6 MHz, δ [ppm]): -146.88 (*singlet*); ¹⁹F{¹H} NMR (CD₂Cl₂, 298 K, 282.5 Hz, [ppm]): -79.1 (singlet).

Figure S1. UV-Vis spectrum of $[6'P][OTf]_3$ in MeCN. Calculated (time-dependent DFT) energy for the HOMO-LUMO transition in model cation $[6P]^{3+}$ at the PBE0/def2-TZVP level in an acetonitrile field.

Figure S2. Selected regions of the infrared spectra of $E(OTf)_3$. The $v(SO_3)$ region is highlighted.

Figure S3. ¹H NMR spectra (CD₃CN, 238 K, 300.27 MHz) of [6'Bi][OTf]₃ at differing concentrations.

Figure S4. ³¹P NMR spectra (CD₃CN, 298 K, 202.5 MHz) of solutions containing equimolar amounts of [6'E][OTf]₃ and Et₃PO.

Figure S5. ³¹P{¹H} NMR spectrum (CD₃CN, 298 K, 202.5 MHz) of the reaction mixture containing [**6'P**][OTf]₃ and PMe₃ in a 1:3 ratio. Symbols denote resonances due to $[(Me_3P)_2P]^{1+}$ (x), $[Me_3PPMe_3]^{2+}$ (o), PMe₃ (|), and unidentified species (*).

Figure S6. ¹H NMR spectrum (CD₃CN, 298 K, 500.27 MHz) of the 1:1 reaction mixture containing [**6'P**][OTf]₃ and 1,4-cyclohexadiene heated to 80 °C for 16 h in CD₃CN. Symbols denote signals due to [*tbbipy*-H]¹⁺ (x), benzene (o), 1,4-cyclohexadiene (#), and residual solvent (*).

Figure S7. ¹H NMR spectrum (CD₃CN, 298 K, 500.27 MHz) of the 1:1 reaction mixture containing [**6'As**][OTf]₃ and 1,4-cyclohexadiene heated to 80 °C for 16 h in CD₃CN. Symbols denote signals due to [*tbbipy*-H]¹⁺ (x), benzene (o), 1,4-cyclohexadiene (#), and residual solvent (*).

Figure S8. ³¹P NMR spectrum (CD₃CN, 298 K, 145.85 MHz) of the 1:1 reaction mixture containing $[6'P][OTf]_3$ and 'Bu₃P (top) and $[6'P][OTf]_3$ and 'Bu₃P (bottom) after stirring for 1 h in CD₃CN. Symbols denote signals due to 'Bu₃P (x), and $[6'P][OTf]_3$ (o).

Figure S9. ³¹P NMR spectra of reaction mixtures containing $[6'P][OTf]_3$, ^{*i*}Bu₃P, and H₂ (red) or D₂ (blue). Symbols denote signals due to $[^{t}Bu_3P-H/D]^{1+}$ (x) and unidentified products (*).

Figure S10. Gas-phase optimized (PBE0/def2-TZVP) structure of *trans*-[(*bipy*)₂PCl₂]³⁺.

Figure S8. ¹H NMR spectrum of [7P][OTf]₃ in CD₃CN.

Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum of $[7P][OTf]_3$ in CD₃CN.

Figure S10. ${}^{31}P{}^{1}H$ NMR spectrum of $[7P][OTf]_3$ in CD₃CN.

Figure S11. ¹H NMR spectrum of [7As][OTf]₃ in CD₃CN.

Figure S12. ${}^{13}C{}^{1}H$ NMR spectrum of $[7As][OTf]_3$ in CD₃CN.

Geometries (PBE1PBE/def2-TZVP):
$[(bipy)_2 P]^{3+}$
P 0.00000 0.00000 0.79635
N 1.80768 -0.73060 0.72276
N 0.69434 1.21821 -0.36766
N -0.69434 -1.21821 -0.36766
N -1.80768 0.73060 0.72276
C 2.1918/ -1./6060 1.491/8
$\begin{array}{c} \Pi \ 1.41270 \ -2.40003 \ 1.69290 \\ \Omega \ 3 \ 52825 \ 1 \ 08282 \ 1 \ 75328 \end{array}$
H 3 82132 -2 83459 2 35702
C 4 47351 -1 09711 1 24763
H 5.52757 -1.24413 1.45695
C 4.06115 -0.00612 0.49345
H 4.78263 0.71333 0.12717
C 2.70860 0.14729 0.24665
C 2.05821 1.23211 -0.46946
C 2.69895 2.20206 -1.21388
H 3.77956 2.19901 -1.28157
C 1.95329 3.15623 -1.88831
H 2.44733 3.92099 -2.47827
$H_{-0.05563,3,81524,-2,34588}$
C -0 03451 2 13433 -1 04979
H -1.10825 2.07059 -0.97296
C 0.03451 -2.13433 -1.04979
Н 1.10825 -2.07059 -0.97296
C -0.56589 -3.10507 -1.81376
H 0.05563 -3.81524 -2.34588
C -1.95329 -3.15623 -1.88831
H -2.44733 -3.92098 -2.47828
C -2.69895 -2.20206 -1.21388
H -3.//956 -2.19901 -1.2815/ C 2.05821 1.22211 0.46046
C = 2.03821 = 1.23211 = 0.40940 C = 2.70860 = 0.14729 = 0.24665
C -4 06115 0 00612 0 49345
H -4 78263 -0 71333 0 12717
C -4.47351 1.09711 1.24763
H -5.52757 1.24413 1.45695
C -3.52825 1.98383 1.75338
H -3.82132 2.83459 2.35702
C -2.19187 1.76060 1.49178
H -1.41270 2.40063 1.89296

Coordinates

of

Optimized

Cartesian

 $[(bipy)_2As]^{3+}$

As -0.00000 -0.00000 0.92446 N 1.97421 -0.68211 0.71364 N 0.71418 1.29727 -0.37683 N -0.71418 -1.29727 -0.37683 N -1.97421 0.68211 0.71364 C 2.47616 -1.67258 1.46341 H 1.76979 -2.32453 1.96787 C 3.84059 -1.85309 1.58340 H 4.22490 - 2.66999 2.18254 C 4.69151 -0.96545 0.93725 H 5.76698 -1.07581 1.02456 C 4.16015 0.08209 0.19454 H 4.81731 0.79897 -0.28060 C 2.78406 0.19993 0.10258 C 2.06083 1.26673 -0.58677 C 2.65437 2.20558 -1.40975 H 3.72260 2.17209 -1.58044 C 1.87992 3.17726 -2.02491 H 2.34248 3.91599 -2.67077 C 0.50811 3.18510 -1.80953 H -0.13583 3.92058 -2.27635 C -0.04394 2.23602 -0.98145 H -1.10586 2.21120 -0.79048 C 0.04394 -2.23602 -0.98146 H 1.10586 -2.21120 -0.79048 C -0.50811 -3.18510 -1.80954 H 0.13584 -3.92057 -2.27637 C -1.87992 -3.17725 -2.02492 H -2.34247 -3.91598 -2.67079 C -2.65437 -2.20557 -1.40976 H -3.72259 -2.17208 -1.58046 C -2.06083 -1.26673 -0.58678 C -2.78406 -0.19993 0.10257 C -4.16015 -0.08209 0.19453 H -4.81731 -0.79897 -0.28062 C -4.69151 0.96544 0.93724 H -5.76699 1.07581 1.02455 C -3.84060 1.85308 1.58340 H -4.22490 2.66998 2.18254 C -2.47616 1.67258 1.46341 H -1.76979 2.32452 1.96788

[(*bipy*)₂Sb]³⁺ Sb -0.00001 -0.00001 1.09174

N 2.12273 -0.61700 0.64889 N 0.74334 1.41750 -0.37012 N -0.74334 -1.41749 -0.37015 N -2.12273 0.61699 0.64888 C 2.73434 -1.59507 1.33388 H 2.11132 -2.23964 1.94687 C 4.10116 -1.77814 1.26806 H 4.56628 -2.58185 1.82618 C 4.84860 -0.90577 0.48916 H 5.92581 -1.01360 0.42320 C 4.21235 0.12441 -0.19164 H 4.79815 0.82594 -0.77046 C 2.83617 0.25102 -0.09302 C 2.05594 1.32889 -0.71542 C 2.59788 2.24009 -1.60542 H 3.63720 2.16216 -1.89498 C 1.80976 3.25121 -2.13382 H 2.23578 3.96747 -2.82806 C 0.47530 3.33167 -1.76348 H -0.17650 4.10635 -2.14849 C -0.02377 2.39898 -0.88293 H-1.05938 2.42582 -0.57572 C 0.02378 -2.39896 -0.88297 H 1.05938 -2.42581 -0.57575 C -0.47529 -3.33164 -1.76354 H 0.17652 -4.10632 -2.14855 C -1.80974 -3.25117 -2.13389 H -2.23576 -3.96743 -2.82815 C -2.59787 -2.24006 -1.60549 H -3.63718 -2.16213 -1.89505 C -2.05594 -1.32888 -0.71547 C -2.83617 -0.25102 -0.09306 C -4.21235 -0.12441 -0.19169 H -4.79814 -0.82593 -0.77052 C -4.84861 0.90576 0.48912 H -5.92582 1.01360 0.42315 C -4.10117 1.77812 1.26804 H-4.56629 2.58182 1.82618 C -2.73435 1.59504 1.33388 H -2.11134 2.23961 1.94689

Bi -0.00001 -0.00001 1.03034 N 2.20813 -0.63558 0.48906 N 0.81493 1.46183 -0.49997 N -0.81492 -1.46183 -0.50000 N -2.20814 0.63558 0.48905 C 2.84370 -1.63074 1.12442 H 2.24442 -2.29208 1.74334 C 4.20664 -1.81946 1.00676 H 4.68738 -2.63716 1.53010 C 4.92757 -0.93424 0.21920 H 6.00105 -1.04312 0.10995 C 4.26821 0.10808 -0.41858 H 4.83598 0.81520 -1.00789 C 2.89607 0.24069 -0.26779 C 2.11491 1.33589 -0.86937 C 2.65674 2.23122 -1.77798 H 3.68554 2.12842 -2.09489 C 1.88189 3.25922 -2.29287 H 2.31034 3.96088 -3.00027 C 0.55867 3.37541 -1.89450 H -0.08222 4.16423 -2.26878 C 0.05913 2.45571 -0.99956 H -0.97042 2.50423 -0.67130 C -0.05912 -2.45570 -0.99959 H 0.97043 -2.50422 -0.67132 C -0.55865 -3.37539 -1.89454 H 0.08225 -4.16420 -2.26884 C -1.88186 -3.25920 -2.29293 H -2.31031 -3.96084 -3.00035 C -2.65672 -2.23120 -1.77803 H -3.68552 -2.12839 -2.09496 C -2.11490 -1.33588 -0.86941 C -2.89607 -0.24068 -0.26783 C -4.26820 -0.10807 -0.41863 H -4.83597 -0.81518 -1.00796 C -4.92757 0.93424 0.21916 H -6.00106 1.04312 0.10989 C -4.20665 1.81945 1.00673 H -4.68740 2.63714 1.53008 C -2.84371 1.63073 1.12441 H -2.24444 2.29206 1.74334

[(*bipy*)₂Sb]³⁺

 $[(bipy)_2Bi]^{3+}$

Bi -0.00001 -0.00001 1.03034 N 2.20813 -0.63558 0.48906 N 0.81493 1.46183 -0.49997 N -0.81492 -1.46183 -0.50000 N -2.20814 0.63558 0.48905 C 2.84370 -1.63074 1.12442 H 2.24442 -2.29208 1.74334 C 4.20664 -1.81946 1.00676 H 4.68738 -2.63716 1.53010 C 4.92757 -0.93424 0.21920 H 6.00105 -1.04312 0.10995 C 4.26821 0.10808 -0.41858 H 4.83598 0.81520 -1.00789 C 2.89607 0.24069 -0.26779 C 2.11491 1.33589 -0.86937 C 2.65674 2.23122 -1.77798 H 3.68554 2.12842 -2.09489 C 1.88189 3.25922 -2.29287 H 2.31034 3.96088 -3.00027 C 0.55867 3.37541 -1.89450 H -0.08222 4.16423 -2.26878 C 0.05913 2.45571 -0.99956 H -0.97042 2.50423 -0.67130 C -0.05912 -2.45570 -0.99959 H 0.97043 -2.50422 -0.67132 C -0.55865 -3.37539 -1.89454 H 0.08225 -4.16420 -2.26884 C -1.88186 -3.25920 -2.29293 H -2.31031 -3.96084 -3.00035 C -2.65672 -2.23120 -1.77803 H -3.68552 -2.12839 -2.09496 C -2.11490 -1.33588 -0.86941 C -2.89607 -0.24068 -0.26783 C -4.26820 -0.10807 -0.41863 H -4.83597 -0.81518 -1.00796 C -4.92757 0.93424 0.21916 H -6.00106 1.04312 0.10989 C -4.20665 1.81945 1.00673 H -4.68740 2.63714 1.53008 C -2.84371 1.63073 1.12441 H -2.24444 2.29206 1.74334

N -1.44465 -1.14618 -0.76114 N -0.23061 -0.51102 1.33633 N 1.48460 -1.41230 -0.50397 N 1.78548 1.05427 0.16056 C -1.90359 -1.37418 -1.98968 H -1.32041 -0.97010 -2.81204 C -3.06235 -2.10520 -2.18152 H -3.42024 -2.30269 -3.18461 C -3.74548 -2.57651 -1.06603 H -4.65997 -3.14642 -1.18809 C -3.25422 -2.32226 0.20903 H -3.78027 -2.68788 1.08160 C -2.07795 -1.59975 0.32055 C -1.34708 -1.25805 1.53683 C -1.70639 -1.68157 2.80207 H -2.59763 -2.28143 2.93269 C -0.91614 -1.35176 3.89096 H -1.18704 -1.68013 4.88810 C 0.23098 -0.60696 3.67294 H 0.89282 -0.33237 4.48482 C 0.54034 -0.20382 2.39120 H 1.42805 0.37588 2.20215 C 1.21990 -2.69947 -0.76001 H 0.19669 - 3.02823 - 0.63941 C 2.20312 - 3.58600 - 1.14978 H 1.94880 -4.62244 -1.33351 C 3.50412 - 3.12510 - 1.29108 H 4.29762 - 3.79566 - 1.60032 C 3.77932 -1.79531 -1.02084 H 4.79023 -1.42108 -1.11205 C 2.74976 -0.95786 -0.62020 C 2.91325 0.45178 -0.27769 C 4.10333 1.15749 -0.37453 H 4.99949 0.67407 -0.73982 C 4.13818 2.48752 0.00670 H 5.06293 3.04956 -0.05726 C 2.97744 3.08676 0.48036 H 2.97173 4.11780 0.81164 C 1.81865 2.34320 0.53365 H 0.88930 2.75507 0.90200 O -1.00263 1.50590 0.13393 P -1.86752 2.60481 -0.57430 C -1.83698 4.08000 0.42629 H -2.17613 3.85428 1.43915 H -0.83424 4.50901 0.46105 H -2.51036 4.82265 -0.01089 C -1.24587 2.99175 -2.20348 H -1.28723 2.11877 -2.85670

 $[(bipy)_2 P(OPMe_3)]^{3+}$

H -1.86181 3.78149 -2.64226 H -0.21638 3.35015 -2.14469 C -3.55947 2.05527 -0.71183 H -3.62892 1.17071 -1.34695 H -3.96080 1.83256 0.27870 H -4.16255 2.84934 -1.16029 P 0.12395 0.10230 -0.43173

$[(bipy)_2As(OPMe_3)]^{3+}$

N 1.79888 1.25788 0.03522 N 1.69390 -1.30855 -0.56101 N -0.22942 -0.48089 1.33116 N -1.42263 -1.42147 -0.76302 C 1.73990 2.57048 0.29690 H 0.75517 2.96773 0.50574 C 2.87000 3.36067 0.31895 H 2.78850 4.41553 0.54949 C 4.09632 2.77363 0.03987 H 5.00413 3.36630 0.03835 C 4.15156 1.41792 -0.23980 H 5.10173 0.95408 -0.46693 C 2.98323 0.66987 -0.23254 C 2.92896 -0.76952 -0.51422 C 4.05349 -1.55377 -0.72309 H 5.04372 -1.12121 -0.67937 C 3.90343 -2.90615 -0.98334 H 4.77484 -3.52990 -1.14669 C 2.62775 -3.44645 -1.03024 H 2.46545 -4.49852 -1.22846 C 1.54791 -2.61296 -0.81797 H 0.53749 -2.99787 -0.85277 C 0.44655 0.03950 2.36543 H 1.19527 0.78137 2.13951 C 0.21056 -0.34576 3.66782 H 0.78761 0.10342 4.46636 C -0.76138 -1.29986 3.91959 H -0.97102 -1.62781 4.93152 C -1.46414 -1.83097 2.85093 H -2.22615 -2.57977 3.02069 C -1.18966 -1.41030 1.56120 C -1.88786 -1.92737 0.38132 C -2.92376 -2.84858 0.38150 H -3.31292 -3.26283 1.30224 C -3.46249 -3.23803 -0.83837 H -4.27088 -3.96021 -0.86556 C -2.96296 -2.70192 -2.01811 H -3.36118 -2.99183 -2.98276 C -1.93311 -1.78133 -1.94002 H -1.49874 -1.32751 -2.82594 O -1.18947 1.60640 0.06913 P -2.28637 2.55961 -0.48955 C -2.04786 2.90313 -2.22789 H -1.07113 3.36107 -2.39635 H -2.12715 1.98935 -2.81984 H -2.81764 3.59963 -2.57035 C -3.90468 1.83732 -0.26951 H -4.08570 1.64609 0.78989 H -4.66932 2.52795 -0.63422 H -3.98641 0.90458 -0.83042 C -2.23393 4.10113 0.40757 H -2.35301 3.91665 1.47686 H -1.29126 4.62119 0.22794 H -3.04980 4.74617 0.07045 As 0.08599 0.13388 -0.57156

 $[(bipy)_2Sb(OPMe_3)]^{3+}$

N 1.69060 1.51051 -0.06619 N 1.92647 -1.10997 -0.59007 N -0.26353 -0.48472 1.33638 N -1.27447 -1.80057 -0.72403 C 1.49455 2.82319 0.12085 H 0.46234 3.14763 0.16104 C 2.54084 3.70928 0.26787 H 2.34267 4.76210 0.42471 C 3.83583 3.21688 0.20258 H 4.68582 3.88210 0.30437 C 4.03610 1.86143 -0.00196 H 5.04389 1.47584 -0.06764 C 2.94379 1.01527 -0.13430 C 3.07143 -0.43245 -0.37449 C 4.29469 -1.08708 -0.39944 H 5.21445 -0.54884 -0.21774 C 4.33962 -2.44714 -0.65990 H 5.29118 -2.96584 -0.68305 C 3.15619 - 3.12829 - 0.89442 H 3.14544 -4.18934 -1.10974 C 1.97148 -2.42090 -0.85178 H 1.02680 -2.91680 -1.03561 C 0.24048 0.24237 2.34253 H 0.77048 1.14425 2.07549 C 0.10163 -0.12340 3.66484 H 0.53088 0.49831 4.44040 C -0.58871 -1.28647 3.96314 H -0.71438 -1.61133 4.98979

C -1.12560 -2.02874 2.92472 H -1.67624 -2.93396 3.14031 C -0.95953 -1.61162 1.61328 C -1.53439 -2.34174 0.47212 C -2.30105 -3.49336 0.57324 H -2.52118 -3.94174 1.53253 C -2.79535 -4.07484 -0.58679 H -3.39593 -4.97553 -0.52607 C -2.51870 -3.49770 -1.81797 H -2.89000 -3.92593 -2.74083 C -1.74876 -2.34980 -1.84458 H-1.49845-1.85688-2.77967 O -1.43199 1.62499 -0.04917 P -2.71887 2.43589 -0.37181 C -3.28457 2.13315 -2.04036 H -2.51724 2.41844 -2.76310 H -3.54369 1.08078 -2.17264 H-4.17866 2.73059 -2.23681 C -4.01984 1.98524 0.76326 H -3.70554 2.18644 1.78908 H-4.91583 2.57398 0.55036 H -4.26595 0.92714 0.65837 C -2.39585 4.18301 -0.19855 H -2.05495 4.40551 0.81459 H -1.64736 4.50843 -0.92388 H -3.31615 4.74378 -0.38239 Sb -0.01005 0.15604 -0.77622

[(bipy)₂Bi(OPMe₃)]³⁺

Bi -0.05627 0.10876 -0.76082 N 1.39538 1.84464 0.00532 N 2.22372 -0.67492 -0.54141 N -0.25413 -0.59488 1.42405 N -0.80080 -2.20820 -0.65837 C 0.92396 3.08462 0.19005 H -0.15406 3.19190 0.16284 C 1.75434 4.16443 0.40963 H 1.33556 5.15180 0.55771 C 3.12330 3.94681 0.42564 H 3.81195 4.76849 0.58662 C 3.60872 2.66474 0.22437 H 4.67642 2.49665 0.21990 C 2.72378 1.61548 0.01395 C 3.17222 0.23017 -0.23192 C 4.50772 -0.14357 -0.16924 H 5.27270 0.57427 0.09121 C 4.86934 -1.45298 -0.44280

H 5.91092 -1.75000 -0.39890 C 3.88541 -2.36917 -0.77549 H 4.12334 -3.40008 -1.00532 C 2.57446 -1.93682 -0.81081 H 1.77593 -2.62322 -1.06555 C 0.00265 0.25836 2.42384 H 0.28778 1.26351 2.14604 C -0.08535 -0.10863 3.74994 H 0.13436 0.61487 4.52485 C -0.45416 -1.40965 4.05092 H -0.52894 -1.74147 5.08032 C -0.73363 -2.28561 3.01543 H -1.02988 -3.30038 3.24106 C -0.63501 -1.86302 1.69738 C -0.95318 -2.74747 0.55950 C -1.40170 -4.05351 0.70070 H -1.53198 -4.50149 1.67606 C -1.69458 -4.79571 -0.43485 H -2.04636 -5.81665 -0.33807 C -1.53821 -4.22135 -1.68696 H -1.76076 -4.76829 -2.59479 C -1.08694 -2.91625 -1.75413 H -0.94841 -2.42446 -2.71269 O -1.81374 1.41556 -0.13914 P -3.25149 1.96813 -0.30183 C -3.91724 1.59201 -1.91792 H -3.29346 2.03301 -2.69822 H -3.98159 0.51191 -2.06417 H -4.92377 2.00839 -2.00803 C -4.33506 1.26416 0.93114 H -3.96821 1.50300 1.93101 H -5.34061 1.67774 0.82072 H -4.39107 0.18063 0.81235 C -3.25131 3.74312 -0.10174 H -2.87751 4.01205 0.88813 H -2.63466 4.21219 -0.87108 H -4.27107 4.12423 -0.19982